Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/34338
Type of publication: Straipsnis recenzuojamoje Lietuvos tarptautinės konferencijos medžiagoje / Article in peer-reviewed Lithuanian international conference proceedings (P1e)
Field of Science: Informatika / Informatics (N009)
Author(s): Užupytė, Rūta;Krilavičius, Tomas
Title: Orders prediction for small IT company
Is part of: ECT-2014 : Electrical and control technologies : proceedings of the 9th international conference on electrical and control technologies, May 8-9, 2014, Kaunas, Lithuania. Kaunas : Technologija, 9 (2014)
Extent: p. 68-73
Date: 2014
Keywords: Ontologijos;Daugiakalbiai dokumentai;Orders prediction;Time series
Abstract: Reliable methodology for service orders prediction can significantly improve the quality of business strategy. It is very important to identify the seasonal behavior in order data to correctly predict customer demand and make appropriate business decisions. There are several methods to model and forecast time series with seasonal pattern. This paper compares seasonal naive, Holt – Winters seasonal, SARIMA and neural networks methods in order to evaluate their performance in prediction of the future values of time series that consist of the monthly orders in a small IT company
Internet: https://eltalpykla.vdu.lt/1/34338
Affiliation(s): Baltijos pažangių technologijų institutas
Baltijos pažangių technologijų institutas, Vilnius
Informatikos fakultetas
Vytauto Didžiojo universitetas
Appears in Collections:3. Konferencijų medžiaga / Conference materials
Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.27 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

Page view(s)

274
checked on Mar 30, 2020

Download(s)

162
checked on Mar 30, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.