Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/56727
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Ekologija ir aplinkotyra / Ecology and environmental sciences (N012)
Author(s): Hoogh, Kees de;Gulliver, John;Donkelaar, Aaron van;Martin, Randall V;Marshall, Julian D;Bechle, Matthew J;Cesaroni, Giulia;Cirach Pradas, Marta;Dėdelė, Audrius;Eeftens, Marloes;Forsberg, Bertil;Galassi, Claudia;Heinrich, Joachim;Hoffmann, Barbara;Jacquemin, Bénédicte;Katsouyanni, Klea;Korek, Michal;Künzli, Nino;Lindley, Sarah;Lepeule, Johanna;Meleux, Frederik;Nazelle, Audrey de;Nieuwenhuijsen, Mark;Nystad, Wenche;Raaschou-Nielsen, Ole;Peters, Annette;Peuch, Vincent-Henri;Rouil, Laurence;Udvardy, Orsolya;Slama, Rémy;Stempfelet, Morgane;Stephanou, Euripides G;Tsai, Ming-Yi;Yli-Tuomi, Tarja;Weinmayr, Gudrun;Brunekreef, Bert;Vienneau, Danielle;Hoek, Gerard
Title: Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data
Is part of: Environmental research. Oxford : Elsevier Ltd, 2016, Vol. 151
Extent: p. 1-10
Date: 2016
Keywords: Oro tarša;Kietosios dalelės;Azoto dioksidas;Air pollution;Fine particulate matter;Nitrogen dioxide
Abstract: Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SATþCTM explained 60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR2 : 0.33–0.38). For NO2 CTM improved prediction modestly (adjR2 : 0.58) compared to models without SAT and CTM (adjR2 : 0.47–0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies
Internet: https://doi.org/10.1016/j.envres.2016.07.005
Affiliation(s): Aplinkotyros katedra
Gamtos mokslų fakultetas
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml19.77 kBXMLView/Open

MARC21 XML metadata

Show full item record

WEB OF SCIENCETM
Citations 1

47
checked on Mar 28, 2020

Page view(s)

156
checked on Jan 6, 2020

Download(s)

14
checked on Jan 6, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.