Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/54558
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Informatika / Informatics (N009)
Author(s): Vaškevičius, Egidijus;Vidugirienė, Aušra;Kaminskas, Vytautas
Title: Identification of human response to virtual 3D face stimuli
Is part of: Informacinės technologijos ir valdymas = Information technology and control. Kaunas : Technologija, 2014, t. 43, Nr. 1
Extent: p. 47-56
Date: 2014
Keywords: 3D face stimuli;Human reaction;Cross-correlation analysis;Input-output model;Parameter estimation;Model validation
Abstract: This paper introduces identification results of human response to virtual 3D face stimuli. Observations of human reactions are done using preprocessed EEG (electroencephalogram) signals: excitement, meditation, frustration, engagement/boredom. Virtual 3D face features – distance between eyes, nose width, and chin width – are used as stimuli. Cross-correlation analysis demonstrated that dynamical relations between human reactions and stimuli exist. Input-output models describing relations between stimuli and corresponding human reactions are built. A new input-output model building method is proposed that allows building stable models with the least output prediction error. Models’ validation results demonstrate relatively high prediction accuracy of human reactions
Internet: https://doi.org/10.5755/j01.itc.43.1.5927
Affiliation(s): Informatikos fakultetas
Sistemų analizės katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml10 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

WEB OF SCIENCETM
Citations 5

8
checked on Sep 12, 2020

Page view(s)

150
checked on Mar 5, 2020

Download(s)

12
checked on Mar 5, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.