Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/40999
Type of publication: Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Informatika / Informatics (N009)
Author(s): Mackutė-Varoneckienė, Aušra;Krilavičius, Tomas
Title: Empirical study on unsupervised feature selection for document clustering
Is part of: Human language technologies - the Baltic perspective : proceedings of the 6th international conference, Baltic HLT 2014. Amsterdam : IOS Press, 2014
Extent: p. 107-110
Date: 2014
Series/Report no.: (Frontiers in artificial intelligence and applications. Vol. 268 0922-6389)
Keywords: Klasterizavimas;Text mining;Feature selection;Text clustering
ISBN: 9781614994411
Abstract: Unsupervised feature selection is very important in the document clustering process. This paper presents the empirical research on feature selection as well as clustering methods and feature representation suitability for Lithuanian and Russian document clustering
Internet: http://ebooks.iospress.nl/volumearticle/38012
Affiliation(s): Baltijos pažangių technologijų institutas
Informatikos fakultetas
Taikomosios informatikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml8.11 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

WEB OF SCIENCETM
Citations 5

1
checked on Jun 2, 2020

Page view(s)

140
checked on Mar 30, 2020

Download(s)

12
checked on Mar 30, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.