Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/105607
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Biofizika / Biophysics (N011)
Author(s): Maciulevičius, Martynas;Tamošiūnas, Mindaugas;Venslauskas, Mindaugas Saulius;Šatkauskas, Saulius
Title: The relation of bleomycin delivery efficiency to microbubble sonodestruction and cavitation spectral characteristics
Is part of: Scientific reports [electronic resource]. London : Nature Publishing Group, 2020, vol. 10
Extent: p. 1-13
Date: 2020
Note: Article number: 7743
Keywords: Ultragarsas;Mikroburbulai;Sonoporacija;Metrika;Sonodestrukcija;Ateniuacija;Sklaida;Bleomicinas;Ultrasound;Microbubbles;Sonoporation;Metric;Sonodestruction;Attenuation;Scattering;Bleomycin
Abstract: The concurrent assessment of principal sonoporation factors has been accomplished in a single systemic study. Microbubble sonodestruction dynamics and cavitation spectral characteristics, ultrasound scattering and attenuation, were examined in relation to the intracellular delivery of anticancer drug, bleomycin. Experiments were conducted on Chinese hamster ovary cells coadministered with Sonovue microbubbles. Detailed analysis of the scattering and attenuation temporal functions culminated in quantification of metrics, inertial cavitation dose and attenuation rate, suitable for cavitation control. The exponents, representing microbubble sonodestruction kinetics were exploited to derive dosimetric, microbubble sonodestruction rate. High intracorrelation between empirically-attained metrics defines the relations which indicate deep physical interdependencies within inherent phenomena. Subsequently each quantified metric was validated to be well-applicable to prognosticate the efficacy of bleomycin delivery and cell viability, as indicated by strong overall correlation (R2 > 0.85). Presented results draw valuable insights in sonoporation dosimetry and contribute towards the development of universal sonoporation dosimetry model. Both bleomycin delivery and cell viability reach their respective plateau levels by the time, required to attain total microbubble sonodestruction, which accord with scattering and attenuation decrease to background levels. This suggests a well-defined criterion, feasible through signal-registration [...]
Internet: https://www.nature.com/articles/s41598-020-64213-y
https://doi.org/10.1038/s41598-020-64213-y
Affiliation(s): Biologijos katedra
Gamtos mokslų fakultetas
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml8.79 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.