Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/104611
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Miškotyra / Forestry (A004);Matematika / Mathematics (N001)
Author(s): Petrauskas, Edmundas;Rupšys, Petras;Narmontas, Martynas;Aleinikovas, Marius;Beniušienė, Lina;Šilinskas, Benas
Title: Stochastic models to qualify stem tapers
Is part of: Algorithms. Basel: MDPI AG, 2020, vol. 13, iss. 4
Extent: p. 1-27
Date: 2020
Keywords: Stem taper;Stochastic differential equation;Probability density function;Maximum likelihood procedure
Abstract: This study examines the performance of 11 tree taper models to predict the diameter of bark at any given height and the total stem volume of eight dominant tree species in the boreal forests of Lithuania. Here, we develop eight new models using stochastic differential equations (SDEs). The symmetrical Vasicek model and asymmetrical Gompertz model are used to describe tree taper evolution, as well as geometric-type diffusion processes. These models are compared with those traditionally used for four tree taper models by using performance statistics and residual analysis. The observed dataset consists of longitudinal measurements of 3703 trees, representing the eight dominant tree species in Lithuania (pine, spruce, oak, ash, birch, black alder, white alder, and aspen). Overall, the best goodness of fit statistics of diameter predictions produced the SDE taper models. All results have been implemented in the Maple computer algebra system using the “Statistics” and “VectorCalculus” packages
Internet: https://doi.org/10.3390/a13040094
Affiliation(s): Lietuvos agrarinių ir miškų mokslų centro Miškų institutas
Lietuvos agrarinių ir miškų mokslų centro filialas Miškų institutas
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml6.76 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.