Use this url to cite publication: https://hdl.handle.net/20.500.12259/264979
Early lung cancer screening using double normalization-based multi-aggregation (DNMA) and Delphi methods with hesitant fuzzy information
Type of publication
Straipsnis Web of Science ir Scopus duomenų bazėje / Article in Web of Science and Scopus database (S1)
Author(s)
Author(s) | ||
---|---|---|
Liao, Huchang | Sichuan University, Chengdu | CN |
Long, Yilu | Sichuan University, Chengdu | CN |
Tang, Ming | Sichuan University, Chengdu | CN |
Lietuvos sporto universitetas | ||
Lev, Benjamin | LeBow College of Business, Drexel University, Philadelphia | US |
Title [en]
Early lung cancer screening using double normalization-based multi-aggregation (DNMA) and Delphi methods with hesitant fuzzy information
Is part of
Computers & industrial engineering
Date Issued
Date Issued | Volume | Start Page | End Page |
---|---|---|---|
2019 | 136 | 453 | 463 |
Publisher
Oxford : Elsevier Science Ltd.
Publisher (trusted)
Is Referenced by
URI
URI | Access Rights |
---|---|
DOI | Viso teksto dokumentas (prieiga prenumeratoriams) / Full Text Document (Access for Subscribers) |
https://hdl.handle.net/20.500.12259/264979 |
Field of Science
OECD Classification
Type of document
text::periodical::journal::contribution to journal::journal article::research article
Language
Anglų / English (en)
Coverage Spatial
Jungtinė Karalystė / United Kingdom of Great Britain and Northern Ireland (GB)
ISSN (of the container)
0360-8352
1879-0550
WOS
WOS:000494891000037
Journal | IF | AIF | AIF (min) | AIF (max) | Cat | AV | Year | Quartile |
---|---|---|---|---|---|---|---|---|
COMPUTERS & INDUSTRIAL ENGINEERING | 4.135 | 3.627 | 3.362 | 3.893 | 2 | 1.179 | 2019 | Q1 |
Journal | IF | AIF | AIF (min) | AIF (max) | Cat | AV | Year | Quartile |
---|---|---|---|---|---|---|---|---|
COMPUTERS & INDUSTRIAL ENGINEERING | 4.135 | 3.627 | 3.362 | 3.893 | 2 | 1.179 | 2019 | Q1 |
Journal | Cite Score | SNIP | SJR | Year | Quartile |
---|---|---|---|---|---|
Computers and Industrial Engineering | 6.6 | 2.047 | 1.469 | 2019 | Q1 |