Bioelektrotechnologijų mechanizmai ir metodai

  • Dalyko kodas: BTC 6011
  • Apimtis ECTS kreditais: 6
  • Pavadinimas anglų kalba: Mechanisms and Methods of Bioelectrotechnologies
  • Dalyko aprašo rengėjas(-ai):

    Prof. Dr. Gintautas Saulis, Dr. R. Saulė, , Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University

Dalyko anotacija lietuvių kalba

Kurso metu susipažįstama su šiuolaikinių bioelectrotechnologijų pagrindą sudarančių reiškinių mechanizmais. Be gilaus teorinio šių technologijų supratimo, studentai įgis naudingų praktinių įgūdžių, būtinų norint sėkmingai taikyti šias technologijas.

Dalyko anotacija užsienio kalba

The course introduces to the fundamental basis of innovative bioelectrotechnologies. During this course besides a deep theoretical understanding, a lot of practical knowledge, which is necessary for successful application of these techniques, will be obtained.

Būtinas pasirengimas dalyko studijoms

Physics (Electricity), Calculus, Biophysics, General Biology, Cell Biology.

Dalyko studijų rezultatai

Understand the origin of bioelectrical potentials, mechanims of generation of the transmembrane potential by the external electric field.
Understand time-course of the transmembrane potential and the influence of various factors on the transmembrane potential.
Understand the mechanims of basic electrokinetic phenomenon.
Understand the mechanims of the phenomena underlying innovative bioelectrotechnologies.
Acquire the skills in using various methods of studying bioelectrical potentials, basic cell electroporation phenomenon (electroporation, electropermeabilization, cell death).

Dalyko turinys

1. Introduction.
2. History of Bioelectrotechnologies (electroporation, electrofusion, electroinsertion, electrotransformation, etc.).
3. Biophysics of Molecular Interactions (Wan der Waal‘s Interactions, Hydrogen and Halogen Bonds, Hydrophobic Forces, Hydration Forces.
4. Interactions of Electric Fields with Cells and other Biological Systems. Electrokinetics Phenomena (electrodeformation, electroorientation, electrorotation, dielectrophoresis) and their Applications in Biotechnology
5. Origin of bioelectric potential (diffusion potential, transmembrane potential, Nerst equation, Goldman equation, distribution of the electric potential at the interface of two phases). Transmembrane potential created by the external electric field (conductivity- and capacity-coupling).
6. Registration of Cellular Bioelectrical Signals: Microelectrodes, Voltage- and Current-Clamp Methods, Patch-Clamp Method, Optical Methods.
7. Time-course of the Transmembrane Potential and the Influence of Carious Factors on the Transmembrane Potential.
8. Mechanims of cell electroporation, electropermeabilization, and death induced by pulsed electrid fields.
9. Osmosis and the Mechanisms of Regulatory Cell Volume Increase and Decrease, their Role in Bioelectrical Phenomena.
10. Determination of the cell membrane electroporation and/or electropermeabilization.
11. Mechanims of cell electrofusion, electroinsertion of proteins, electrochemotherapy.
12. Mechanims of electrically induced gene transfer, transdermal drug delivery, electroporation during electrostimulation and defibrillation, ablation by irreversible electroporation.
13. Quantum-chemical and Molecular Dynamics studies on the Mechanisms of Electroporation and Related Phenomena.
14. Applications of of Innovative Bioelectrotechnologies
15. Ethical Problems and Future Perspectives of Innovative Bioelectrotechnologies.
Practical work (contents):
Dielectrophoresis. Estimation of the influence of the medium conductivity on the cell transmembrane potential. Determination of the cell membrane electroporation from the release of intercellular potassium ions. Determination of cell electropermeabilization for bleomycin. Cell death induced by pulsed electrid fields. Modeling of the response of the cells to pulses of different shape (unipolar square-wave, bypolar square-wave, exponential, sine-wave). Cell electrofusion.

Dalyko studijos valandomis

Lectures – 30 hours, laboratory work – 30 hours, individual work – 94 hours, examinations– 6 hours. Total 160 h.

Studijų rezultatų vertinimas

Final assessment sums the assessments of the assessment of laboratory work (30%), written mid-term examination (20%), and written final examination (50%).

Literatūra

1. 2016 (Sept) D. Miklavčič (Editor-in-Chief) Handbook of Electroporation Springer
2. 2001 R. Glazer, Biophysics. Berlin: Springer Verlag
3. 1995 J. Malmivuo and R. Plonsey. Bioelectro-magnetism: Principles and Applications of Bioelectric and Biomagnetic Fields New York: Oxford University Press
2010 A. G. Pakhomov, D. Miklavcic, and M. S. Markov (Eds.) Advanced Electroporation Techniques in Biology and Medicine CRC Press (Taylor & Francis Group), Boca Raton
Supplementary materials
1. 2012 P. F. Dillon, Biophysics: A Physiological Approach Cambridge: Cambridge University Press
2. 2007 Lelieveld H.L.M., Notermans S., and De Haan, S.W.H. (Eds.) Food Preservation by Pulsed Electric Fields: From Research to Application. CRC Press (Taylor & Francis Group), Boca Raton
3. Enrico P. Spugnini and Alfonso Baldi (Eds.) Electroporation in Laboratory and Clinical Investigations Nova Science Publishers, Inc., Hauppauge, NY